
The Engine Design Engine.

A Clustered Computer Platform for the Aerodynamic

Inverse Design and Analysis of a Full Engine.

J. Sanz, K. Pischel and D. Hubler.

NASA Lewis Research Center.

Introduction

The use of parallel processing with advanced supercomputers is per-

mitting the attempt of computational tasks that very few years ago would
have seemed unreasonable. Present parallel computing capabilities make

perfectly reachable the aero design of a full, multi-staged, turbo engine by

direct simulation of the Euler equations rather than depending on the ex-

pensive gathering of experimental data for closure of a modeling 'ansatz'

of these equations.

Concurrent with the development of supercomputers, powerful worksta-

tions have made their way onto researchers' desks. It is not uncommon,

though, that these workstations, while having a very heavy interactive use

during regular hours, may experiment a much lower use at other times.

With workstations of 25 MFLOPs per processor it seems reasonable to

develop applications that can harness this tremendous, and frequently hid-

den, computational power.

This paper describes an experiment in parallel computing performed in

collaboration with the Computer Services Division and the Aeropropulsion

Analysis Office of the NASA Lewis Research Center. A cluster of seven

IBM RS/6000-550 powerstations and two CRAY-YMP main frames has

been used for this experiment. The machines have been clustered using

the Lewis Ethernet Network, with the TCP/IP protocol. Three hardware

configurations have been tested for parallel processing: An RS/6000 clus-

ter, a heterogenous cluster of RS/6000 plus two CRAY-YMP machines,

and a stand alone CRAY-YMP using all eight processors.

A version of the code Aida.fe, Aerodynamic Inverse Design and Anal-

ysis for a Full Engine, has been parallelized using the Parallel Virtual Ma-



chine (PVM) programing language. The master/slave paradigm suggested

by the PVM developers has been followed in the parallelization of the code.
In this environment the master runs on the host workstation and the slaves

run on each one of the nodes attached to the cluster. The host performs
all the I/O operations and file manipulation with little CPU use but with an

extensive use of memory. On the other hand, the nodes execute most

of the computational work with no I/O needed. The executable is actually
the only file, permanent or temporary, used by the node. This is a very
desirable feature to have in a multi-user environment, both in a distributed
cluster of workstations or when mainframes are attached as nodes. A node

retrieves, or sends, through PVM message passing calls, all the necessary
information from, or to, the host or the other nodes, while the host does

all the pre- and post-processing and storage. In the following sections we
describe the three different configurations explored.

The RS/6000 Cluster

The first test on the clustered system was performed during the month
of April 1992. Seven IBM RS/6000-550 powerstations located in different

buildings were linked on the Ethernet network. No subnetting was estab-
lished, so the experiments ran in a shared mode with the regular network
traffic at the Lab.

One workstation is used as both host and node, while the remaining

six are used as nodes. In the approach taken in the parallelization of the
code each node handles the calculation for one blade row or flow passage.

It could then be classified as a macro-tasking parallelization. Figure No.

1 "represents a schematic of the clustered configuration. The host sends
to each node the particular information needed, and broadcasts to all of

them the common information they have to share. The nodes return to
the host some computed values and, after further manipulation by the

host, the nodes are given the order to begin the main execution of the
program. In this first test case, the nodes perform the main calculation
with no communication between themselves.

Table No. 1 shows the CPU time used by each node on the cluster,
compared to the CPU time on one YMP processor of a sequential run for



the same test case. The results show that, with a coarse grid run that

achieves a rate of 54 MFLOPs on the YMP, four RS/6000 processors are

equivalent, in CPU time, to one YMP processor. Subsequent examples will

show the corresponding rates when, with finer grids, the YMP delivers rates
of 84 and 112 MFLOPs. The results shown in Table No. 1 were obtained

after some vectorization improvements were made. The original run, in

April, shewed a 3.2 equivalence rate between RS/6000 processors and

one YMP processor. Real time comparison was also made by running the
cluster on one of the host windows while on another window the same case

would run, sequentially, on one YMP processor. Consistently, the cluster

would complete execution at the time the YMP would finish the fourth blade

row. Because of the short CPU times of the tests, time sharing on the YMP

gives high priority to the job, making the real time comparison very close

to the CPU comparison shown before.

Since the time at which this test was performed, the cluster has worked

consistently well on a sustained mode of operation, including the case

in which nodes talk to each other, producing a substantial amount of

interprocessor communication. It is obvious, though, that the advent of

more users performing parallel work on a distributed environment will

require the establishment of separated subnets for those machines forming
different clusters. This will restrict the trafic within each subnet.

node

1

2

3

4

5

6

7

arch

RS/6000

RS/6000

RS/6000

CPU sec

22.34
i

22.00

22.57

RS/6000 22.05
i i

RS/6000 23.I3

RS/6000 22.39

RS/6000 23.14
i

RISC/YMP processors = 4

node

1

1

1

1

1

1

1

arch CPU sec

Cray 5.68
i ii

Cray 11.04

CLay 16.52

Cray 21.88

27.30Cray

Cray 32.65

Cray 38.15
i

YMP MFLOPs = 54.

Table 1. The RS/6000 versus one YMP processor.



The Heterogeneous Cluster

In the design process established by the code methodology the CPU
time needed by different blade passages may vary largely. It seems then

reasonable to have the capability of attaching to the cluster, as new nodes,
one or more processors of a CRAY-YMP to handle the blade rows that

need a more intensive CPU. The host RS/6000 handles perfectly this
heterogeneous system in which one or more nodes are processors of a
CRAY-YMP. All PVM requires is to recompile the node executable on the
new CRAY architecture. For this test, we linked to the cluster the CRAY-
YMP at the Lewis Research Center and the NAS CRAY-YMP, located at
the Ames Research Lab.

In this new environment, we run, as in case No. 1, the same test from

the previous section. Table No. 2 shows the CPU time per node on an

RS/6000 node compared to the CPU time on one YMP processor. It shows

again that four RS/6000 processors perform at the same rate as one YMP
processor. Cases No. 2 and 3, on the same table, show the comparison
between the two architectures when the code runs on finer grids with an

85 and 112 MFLOPs count on the YMP. In these cases, six and eight
RS/6000 processors, respectively, are needed to produce the same work
as one YMP processor.

The host can request a specific architecture, for a given virtual node,

at the initialing call. When there are more virtual nodes initialized of a

given architecture than there are machines attached to the cluster with the
requested architecture, PVM will start as many new processes as required,
and will split them within the machines available of the given type. A

practical case is the one in which just one of the two YMPs is attached
to the cluster. In this case, as many processes are started on this machine

as virtual CRA¥ nodes are required. It is worthwhile noting that when using
the heterogenous cluster, and if internode communication is required, the

nodes that so require should run on the same architecture in order to have
a balanced execution.

Although other architectures could have been tried, the high CPU

speed requirements make the combination of RS/6000 and YMPs a very
formidable hardware platform for the task at hand.

4



case

1

2

3

arch

RS/6000

RS/6000

RS/6000

CPU sec/

node

23.

132.35

994.94

RISC/ arch

YMP

4 Cray

6 Cray

8 Cray

CPU sec/

node

5.53

21.91

122.60

MFLOPs

54.

85.

112.

Table 2. The heterogenous cluster.

The Stand alone YMP

The last configuration studied comprises the eight processors CRAY-

YMP at the Lewis Research Center acting as a stand alone platform with

the host and nodes running on the same machine. The purpose of this

test is to have an estimate of the efficiency of PVM, for our particular

application, in using the resources available, and to assess the overhead

imposed by the interprocessor communication.

Ten test cases were run on this machine on dedicated time. The results

are tabulated on Table No. 3. Cases 1, 3, 5, 7 and 9 consist of tests without

internode communication, while their counterparts 2, 4, 6, 8 and 10 run the

same cases with large internode communication. In cases 1 and 2 only

four processors are called, showing in case 1 a 49.2 percent use of the

total machine or 98.4 percent of the four processors requested. Case 2

shows that a 20 percent of the machine usage is spent in interprocessor
communication.

Cases 3 to 10 required the use of all eight processors. Case 3, with no

internode communication uses 98 percent of the full machine. Case 4 adds

a 30 percent use for internode communication. Because it is a coarse grid

run, the rate of internode communication to CPU usage is large. Cases 5

and 6 are equivalent to cases 3 and 4, but executed on a finer grid. The

rate of internode communication to CPU usage is then lower than in case

4, showing a good 4 percent use of the machine for node communication.

Cases 7 and 8 are similar to cases 5 and 6 but executed with a

more sustained calculation. Finally, cases 9 and 10 represent a third grid



refinement calculation with a112 MFLOPs count.

Overall the test seems to indicate that the present application makes

an efficient use of the available processors on a super-computer, and this

is more evident when finer grids and sustained calculations are performed.

case #nodes arch

1 4 Cray

2 4 Cray

3 8 Cray

4 8 Cray

5 8 Cray

6 8 Cray

7 8 Cray

8 8 Cray

9 8 Cray

10 8 Cray

CPU sec Wall %8-CPU %Toml MFLOPs

/node Clock /node CPU

31.00 31.48 12.30 49.20 54.

46.16 71.49 8.00 40.00 54.

51.49 52.47 12.25 98.00 54.

53.05 85.18 8.50 68.00 54.

62.47 65.65 11.875 95.00 85.

62.83 68.74 11.41 91.30 85.

207.37 226.06 11.3 90.40 85.

209.04 257.93 9.92 79.4 85.

119.13 124.16 11.95 95.6 112.

119.88 129.08 11.64 93.12 112.

Table 3. Eight processors on a YMP.

Concluding Remarks

An application for parallel computation on a combined cluster of power-

ful workstations and super-computers has been developed. PVM, Parallel

Virtual Machine, is used as message passage language on a macro-tasking

parallelization of the Aerodynamic Inverse Design and Analysis for a Full

Engine computer Code. The heterogenous nature of the cluster is perfectly

handled by the controlling host machine. Communication is estabfished

via Ethernet with the TCP/IP protocol over an open network. A reasonable



overhead is imposed for internode communication, rendering an efficient

utilization of the engaged processors. Perhaps one of the most interest-

ing features of the system is its versatile nature, that permits the usage of
the computational resources available that are experiencing less use at a

given point in time.

Acknowledgment

The authors would like to thank Tony Hackenberg, NASA Lewis Com-
puter Service Division, for his superb assistance on the use of the CRAY-
YMP on dedicated time.



Nodes

Nodes

ENGINE DESIGN ENGINE

Host _ I

ill/Ill

////://-//I//://
Host

1 2 3 4 5 6 7

_X


